
Euterpea Quick Reference
Donya Quick, 27-Dec-2016

Note: type :i name into GHCi for more information on any type or function name.

Musical Types and Data Structures

type AbsPitch = Int MIDI pitch numbers. Middle C = 60.
type Duration = Rational 1.0 = a whole note in 4/4 = wn (see duration values further down).
data PitchClass = C | Cs | Df | D | Ds | … | B f = flat, s = sharp

type Pitch = (PitchClass, Octave) Middle C = (C,4)

data Primitive a = Note Dur a | Rest Dur basic musical building blocks, notes and rests

data Music a = Prim (Primitive a) musical leaf node holding a Primitive (note or rest)

 | (Music a) :+: (Music a) sequential composition
 | (Music a) :=: (Music a) parallel composition
 |Modify Control (Music a) modifier node (affects subtree interpretation)

data Control = Tempo Rational Interpret with a tempo multiplier (>1 is faster).
 | Transpose AbsPitch Interpret transposed by some number of pitches (>0 is up).

 | Instrument InstrumentName Interpret using the specified instrument
 | …

type Music1 = Music (Pitch, [NoteAttribute])

Musical Functions

Duration values: wn, hn, qn, en, sn, tn whole, half, quarter, etc. Add a “d” for “dotted” (ex: dqn)
Create notes using pitch classes: c, cs, df, d, ds, …, b examples: c 4 qn, ef 6 wn
Primitive constructor shorthands: note, rest examples: note qn (C,4) , rest 4
Sequential composition over a list: line :: [Music a] -> Music a
Parallel composition over a list: chord :: [Music a] -> Music a
Create a percussion/drums note (MIDI channel 9): perc :: PercussionSound -> Dur -> Music Pitch

Modifier shorthands (simply adds a Modify node at the top level): instrument, tempo, transpose
Functions that alter the supplied Music tree: shiftPitches, shiftPitches1, scaleDurations,
changeInstrument, removeInstruments.

Retrograde (reverse): retro :: Music a -> Music a
Inversion (flip upsidedown) around first pitch: invert :: Music Pitch -> Music Pitch
Invert around a particular pitch: invertAt :: Pitch -> Music Pitch -> Music Pitch
Delay by some amount of time: offset :: Dur -> Music a -> Music a

Repeat a finite number of times: times :: Int -> Music a -> Music a
Repeat infinitely: forever :: Music a -> Music a
Remove some amount from the start: cut :: Dur -> Music a -> Music a
Remove some amount from the end: remove :: Dur -> Music a -> Music a
Apply a function to all Notes: mMap :: (a -> b) -> Music a -> Music b

Apply functions to all Music tree nodes: mFold

MIDI Playback Functions

Play to default MIDI output device: play :: (ToMusic1 a, NFData a) => Music a -> IO()

Supported a types: AbsPitch, Pitch, (Pitch, Volume) , Music1
List available MIDI devices: devices :: IO()

Play to a specific MIDI device: playDev
Timing-strict playback for finite values: playS, playDevS

